Stable Operation of Li-Air Batteries

Ji-Guang Zhang

Pacific Northwest National Laboratory Richland, Washington, U.S.A.

The 4th Symposium on Energy Storage: Beyond Lithium Ion

June 8, 2011

Pacific Northwest NATIONAL LABORATORY

Outline

- 1. Development of High Capacity Primary Li-air Batteries
- 2. Stability of Li-air Batteries Using Aqueous Electrolyte & NASICON Glass
- 3. Stability of Li-air Batteries Using Non-Aqueous Electrolyte
 - 3.1 Reaction Products During Discharge Process
 - 3.2 Reaction Products During Charge Process
- 4. Summary

1. Development of High Capacity Primary Li-air Batteries

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode

a and **b**, SEM images of asprepared graphene-based air electrodes

c and **d**, Discharged air electrode using FGS with C/O = 14 and C/O = 100, respectively.

e, TEM image of discharged air electrode.

f, Selected area electron diffraction pattern (SAED) of the particles: Li_2O_2 .

Jie et al, to be published

Graphene as a Lithium-Air Battery Electrode > Record Capacity of 15,000 mAh/g

2. Stability of Li-air Batteries Using Aqueous Electrolyte & NASICON Glass

In Aqueous Electrolyte

 $Li + \frac{1}{2}O_2 + \frac{1}{2}H_2O \xleftarrow{} LiOH$

Challenges: Stable glass electrolyte at strong acid and alkaline environment

Chemical stability
Electrochemical stability
Single ion conductivity

Advantages and Challenges in Li-air Batteries

			Theoretical	Theoretical	
Li/O ₂ Reaction in Different Electrolyte	Theoretical voltage	Theoretical	specific energy	specific	Specific
		specific energy	based on	energy based	energy based
		based on metal	reactants	on reaction	on full reaction
			(excluding O ₂)	products	
	V	Wh/kg	Wh/kg	Wh/kg	Wh/kg
With precipitation					
(Li/electrolyte/carbon)					
$ 1i + \frac{1}{2} O_2 \leftrightarrow \frac{1}{2} i_2 O_2 \rangle$	3 10	11972	11972	3622	2790**
	0.10	11072		0022	2100
Li + 0.25 O ₂ + 1.5 H ₂ O ↔	2 4 2 96*	12000	0747	2109	1500
LiOH [·] H ₂ O	3.4-3.00	~12000	2717	2190	1500
$1i \pm 0.250_{\circ} \pm HCl \leftrightarrow IiCl$					
+0.5H_0	3.86-4.44*	~12000	2637	2227	1607
(Li & cloctroluto)					
$LI + 0.25 O_2 + 11.14 H_2 O \leftrightarrow$	3.4-3.86*	~12000	444	428	444
LIOH+10.64H ₂ O					
Li + 0.25O ₂ + HCl	3 86 1 14*	12000	1352	1226	1252
+2.29H ₂ O↔LiCl +2.79H ₂ O	5.00-4.44	~12000	1552	1230	1353

* Voltage is a function of pH value: V = 4.268 - 0.059 pH

Pacific Northwest

**J. P. Zheng et al, *J. Electrochem. Soc.*, 158 (1), A43- A46 (2011).

Voltage in Li-Air Batteries Strongly Depends on pH Value of Aqueous Electrolyte

Stability of LTAP Glass vs. pH

Yamamoto et al, presentation in Symposium on Energy Storage Beyond Lithium Ion, ORNL, Oct, 2010 https://www.ornl.gov/ccsd_registrations/battery/presentations/Session6-840-Yamamoto.pdf

Proudly Operated by Battelle Since 1965

NATIONAL LABORATORY

Limitation of Li-air Batteries in Acid Electrolyte

To utilize the full capacity of acid electrolyte based Li-air batteries, pH value of the electrolyte has to be limited to be larger than 4.

Pacific Northwest NATIONAL LABORATORY

Limitation of Li-air Batteries in Alkaline Electrolyte

To utilize the full capacity of alkaline electrolyte based Li-air batteries, pH value of the electrolyte has to be limited to be less than 10.

Pacific Northwest NATIONAL LABORATORY

Electrochemical Stability of NASICON Glass in Aqueous Electrolytes

➢NASICON solid electrolyte cannot distinguish between H⁺ ions and Li⁺ ions, at least on the interface.

➢Both Li⁺ and H⁺ ion in chamber B participate in the electrochemical process. Increase of pH value in chamber B may indicate the reaction of H⁺ with glass electrolyte.

Pacific Northwest

See Dr. Fei Ding's poster for more details

3. Stability of Li-air Batteries Using Non-Aqueous Electrolyte

 $2\text{Li} + \text{O}_2 \leftrightarrow \text{Li}_2\text{O}_2$ $\text{E}^0 = 3.1\text{V}$ Schematic of reaction processes in metal-air batteries. Challenges: Stable non-aqueous electrolyte in oxygen rich environment

a.
$$2\text{Li} + \text{O}_2 \xrightarrow[\text{ln non-aqueous}]{\text{electrolyte}} \text{Li}_2\text{O}_2$$

b. $2\text{Li} + \text{O}_2 \xrightarrow[\text{electrolyte}]{\text{ln non-aqueous}} \text{Li}_2\text{O}_2$

Investigation on the Reaction Products in Li-O₂ Batteries

3.1. Reaction Products During Discharge Process

Li₂O₂ Was Not Observed in the Discharge Products When Carbonate Solvents Was Used

- For all DODs (from 2.8 V to 2.0 V), nearly no Li_2O_2 and Li_2O were detected.
- Lithium alkylcarbonates (LPDC and LEDC) and Li₂CO₃ are identified to be the primary discharge products.

Pacific Northwest NATIONAL LABORATORY

Ether Based Electrolytes Can Lead to the Formation of Li₂O₂ During Discharge

ATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Intensity (a. u.)

See Dr. Wu Xu's poster for more details

3.2 Reaction Products During Charge Process

Proudly Operated by Battelle Since 1965

Pacific Northwest

NATIONAL LABORATORY

What Can be Charged?

First cycle charge capacities:

- a) SP: 4.1 mAh/g
- b) Li_2CO_3 : 4.8 mAh/g
- c) LEDC: 99.6 mAh/g (331 mAh/g, 30.1%)
- d) LPDC: 153.3 mAh/g (308 mAh/g, 49.8%)
- e) <u>Li₂O₂ : 1078.6 mAh/g</u> (1165 mAh/g, 92.5%)
- a) Li₂O: 63.3 mAh/g

- Li₂O₂: Highly chargeable (>92%)
- LEDC and LPDC: Partially chargeable (~42-69%) and is responsible for apparent recharge-ability reported before.
- > Li_2O , SP, and LiC_2O_3 : Not chargeable

Pacific Northwest

What Are the Charge Products? (GC/MS Analysis)

 Li_2O – some CO_2 and CO. It cannot be oxidized.

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

f)

Charge Efficiency in Different Non-Aqueous Electrolytes in Oxygen-Rich Environment

Cyclic voltammograms (100 mV/s) on glass carbon in O₂ and Ar saturated LiPF₆ in different non-aqueous solvent

 $Q_{OFR}/Q_{ORR} = 97.5\%$

Butyl Diglycol Ether (1.0M) $Q_{OER}/Q_{ORR} = 96.7\%$ >No OER peak for LiPF_6/PC solution indicates that all the ORR products react with PC which leads to the products that can not be oxidized/recharged within the potential range.

>Large Q_{OER}/Q_{ORR} ratio for LiPF₆/ether solution indicates that most ORR products can be oxidized/recharged within the potential range.

See Dr. Yuyan Shao's poster for more details

What Are the Source of Limited Efficiency? --NMR Investigation on Discharged Electrodes

The characteristic peak of carbon for Li_2CO_3 is located at 169 ppm and the peak at 112 ppm is ascribed for Kel-F signal from the two end plugs inside the MAS rotor.

- \succ Li₂CO₃ is still found in all electrodes discharged in all different electrolytes.
- The formation of Li₂CO₃ during discharge process of a Li-air battery will limit the cycle life of the batteries.
- **\therefore** Where is Li₂CO₃ from carbon electrode or electrolyte?

NATIONAL LABORATORY

Li₂CO₃ Comes From the Electrolyte --¹³C-MAS NMR Study

- ¹³C-labeled air electrode was prepared and discharged in the same electrolyte.
- IfLi₂CO₃ comes from the carbon electrode, the ¹³C-MAS NMR signal corresponding to Li₂CO₃ would increase by nearly 90 folds using 99% ¹³C labeling since the natural abundance of ¹³C is only 1.1% without isotope enrichment.

- > The signal of Li_2CO_3 in the ¹³C-labeled carbon electrode is not larger, but even less, than the corresponding signal in the natural abundance carbon electrode.
 - \Rightarrow This result unambiguously reveals that the Li₂CO₃ is originated not from the carbon electrode but from the electrolyte.
- Oxygen and/or superoxide radical anions may oxidize the alkyl groups (CH₃ or CH₂) or ether bond (C–O) into the carbonate groups that in turn form Li₂CO₃.

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

See Dr. Jian Zhi Hu's poster for more details

- 1. Graphene based air electrode exhibits very high capacity (~15,000 mAh/g) due to its dual pore structure and defect activity.
- 2. Specific energy of Li-air batteries with aqueous electrolyte is strongly limited by the operational pH window of NASICON glass. Electrolyte additives and other approaches which can stabilize pH value of electrolyte is critical for long term operation of aqueous based Li-air batteries.
- 3. In carbonate electrolytes, the majority of the discharge products in Li-air batteries are lithium alkylcarbonates and Li_2CO_3 . Apparent rechargeability is due to oxidation of Lithium alkylcarbonates which release CO_2 and CO. This process is not sustainable.
- 4. Li₂O₂ can be formed during discharge process when ether based electrolytes were used, Li₂CO₃ was still observed and need to be minimized.
- 5. Electrolyte is the key for rechargeable, long term operation of Li-air batteries.

Pacific NATIONAL LABORATORY

Acknowledgments

Technical Team:

Wu Xu, Jie Xiao, V. Viswanathan, Jianzhi Hu, Vijayakumar Murugesan, Silas A. Towne, Phillip Koech, Donghai Mei, Fei Ding, Zimin Nie, Yuyan Shao, Jian Zhang, Dehong Hu, Deyu Wang, Jun Liu, and Gordon L. Graff

Financial support:

- •Defense Advanced Research Program Agency
- •Laboratory Directed R&D Program (Transformational Materials Science Initiative) of PNNL

