Advanced Materials for Lithium-Sulfur Batteries

Beyond Lithium-Ion Batteries Symposium IV

Chengdu Liang

Staff Scientist

June 8, 2011

Nancy Dudney, Jane Howe, Wujun Fu, Zhan Lin, and Zengcai Liu

Battery Chemistry: Essential for Innovative Breakthrough for Li-Batteries

Ideal battery system: pure elements with every atom contributing to charge transfer and energy exchange. Li-S/ Li-O will be the systems of choice!

Li-S Batteries Hold the Promise for Next Generation of Battery Technology.

<u>Theoretical</u> <u>Specific Energy</u> Li/S: 2600 Wh/kg

Features of Li-S

- High Capacity
 - High energy density
- Moderate Voltage
 - Safe
 - Compatibility
- Low Cost
 - High abundance

Migration of S Poses the Major Challenge for Li-S Batteries.

- Intrinsic sulfur migration: liquid phase diffusion
- Irreversible Li₂S formation: both cathode and anode
- Poor Li anode cyclability: corrosion/ Li₂S deposition/ dendrites

Why Li-S Cannot Cycle Long?

•Self-discharge Capacity fading Cell resistance increase •Poor cyclability Passivate Li anode •Decrease the diffusivity of ions •Gel electrolytes Solid electrolytes Physically absorb S •High surface area carbons Conducting polymers Chemically immobilize S

•S-polymers •S-salts

1) Cheon, S. E.; Choi, S. S.; Han, J. S.; Choi, Y. S.; Jung, B. H.; Lim, H. S. Journal of the Electrochemical Society 2004, 151, A2067-A2073. 2)Mikhaylik, Y. V.; Akridge, J. R. Journal of the Electrochemical Society 2004, 151, A1969-A1978 AK Managed by UT-Battelle

for the Department of Energy

Li-S Cell Has a Short Cycle-Life.

- Detrimental deposition of Li₂S :
- Increase of cell resistance
- Decrease of cell capacity

1000 Cycle-Life is Possible.

National Laboratory

Approach to Improve Performance is Three-fold.

Goal: Understand and overcome the obstacles of cycling the Li-S battery

Activated Templated Carbon Gives Well Controlled Porosity for Sulfur Host.

- C/S composites by using bimodal porous carbon
 - Physical confinement of S in < 2nm pores
 - Electronic contact of S
 - Adsorption of polysulfides
 - lonic path through mesoporous

Micropores (<2nm): host sites for S Mesopores (2-50 nm): path for Li⁺ transport

Simple Synthesis Procedure Eases the Preparation.

Three-step Synthesis of Carbon/Sulfur Composite

- 1. Soft-template synthesis of mesoporous carbon
- 2. KOH activation
- 3. Sulfur infiltration

Composite is Tailored with Sulfur Loading.

Pore Volume VS Sulfur Loading

11 Ma for

- S preferentially fills the micropores
- Pore Volume is the key parameter for S loading
- Mesopores impart high surface area to the composite

Sulfur Loading is Precisely Positioned.

SEM and Elemental Maps

TGA analysis of Sulfur Loading

Elemental S is precisely controlled within the micropores

12 Managed by UT-Battelle for the Department of Energy

Business Sensitive

Cycling Performance (without Electrolytes Additives) is Greatly Improved by Nano-engineered Carbon Host which Retains Sulfur.

Note: specific capacity is per gram sulfur. Theoretical is 1675 mAh/g.

Electrolyte Additives Can Reverse Li₂S Formation, Improving Cycle Life of Li/S Half-cells.

Polymerization of electrolytes after 10 cycles

Traditional approach: Avoid the formation of Li₂S

Our approach: Allow the formation of Li_2S and make it reversible through a catalytic process

- Additives improve the reversibility of Li₂S formation
- The polymerization of the electrolytes plays an important role on the cyclability of Li-S cells

Catalyzed Reversibility of Li₂S Formation Drives S back to Cycling.

Speculation on how the additives function?

- 1. React with Li₂S and free the sulfur back to cycling.
- 2. Regenerate electrochemically at the charge cycle.

LiBr Additive Alters and Stabilizes Shape of Voltage Curves.

Possible Mechanism for Reverse Shuttle Reaction

Bench-top Demonstration Gives Further Evidence that LiBr Catalyzes Reversibility of Li₂S Formation.

Images of Li_2S in organic solvents: Left, without Br_2 ; right, with Br_2

In the charging cycle:

LiBr \longrightarrow Br₂ (cathode) + Li (anode)

Electrochemically generated Br₂ proceeds to the following chemical reaction

 Br_2 (liquid) + Li₂S (solid) \longrightarrow

 Li_2S_x (solution) + LiBr (solution)

This reaction returns the Li_2S solid back to solution and accelerates the electrochemical reaction, therefore catalyzing the reversibility of Li_2S formation

Shuttles could Possible Heal Damaged Li Anode.

A Major Drawback of LiBr Additive is Severe Corrosion of Cell Parts.

Corrosion of stainless steel parts

Corrosion of aluminum current collector

Use carbon to replace all metal parts could be the solution.

Emerging Concerns of Electrolyte Compatibility Need to be Addressed

Polymerization and the carbonization of electrolyte could cause problems for long-term cyclability .

Need further investigation of electrolyte composition.

21 Managed by UT-ващене for the Department of Energy

Conclusions

- Li-S chemistry is promising for next generation of batteries
 - High energy density
 - Low cost
 - Environmental benignity
- Advances in material development are essential
 - Enhance electronic and ionic conductivities
 - Inhibit the migration of sulfur species
 - Reverse the formation of Li₂S
- Key challenges still remain
 - Block the polysulfide shuttle completely
 - Improve the compatibility of electrolytes with cell components

Acknowledgements

Funding support

LDRD

VT program

User Facilities

Shared Research Equipment (SHaRE) User Facility An Office of Science User Facility

