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Our research guestion

 We asked: in the short (10 to 15 year) and long (40 to 50 year) term,

what is the availability of the elements for scaling up batteries for grid
and vehicle energy storage?

* Proviso: given the long time frames and estimates involved our results
are semi-quantitative.



Many states and countries have a renewable portfolio
standard

. Standard: Mandatory EPS . Goals: State Renewable Goal
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- Latest undate: Novernber 2010

Source: RPS Edge database



Wind and solar often have a variable output

Bonneville Power Administration data, May 25 —June 1, 2011

Source: BPA website. The Bonneville Power Administration manages power throughout the US Pacific Northwest. 5



Scaling up renewables may require a major scale-up
of battery production

« Without energy storage: grid expansion and demand management.

» With energy storage:
— Pumped hydro and compressed air currently dominate.
— Batteries (and other technologies) can be deployed anywhere.

Seneca pumped storage reservoir and the A123 Systems battery storage in Chile
Kinzua dam on the Allegheny river, PA




Scaling up electric vehicles may require a
major scale-up of battery production

« Batteries have the highest energy per mass and volume of available
electrical storage devices.

There is a Race for 215t Century Vehicle Fuels Which pathway will win?

‘ - Cost
- Technical readiness
Improved efficiency (none) ‘ - Infrastructure requirements
- Resources
Batteries (fossil, renewables) ‘

Hydrogen (fossil, renewables) ‘
Synthetic liquid fuels ‘

(fossil, renewables)

Fossil fuels (fossil)

- Environment
- Politics and regulation

Biofuels (sunlight)

Slide inspired by the late Alex Farrell, UC Berkeley



For each couple we looked at three questions

1) Based on the specific energy, is the couple suitable for electric vehicles or
only for grid-scale batteries? Vehicle batteries should have high specific

energy and energy density.

2) What is the energy storage potential (in TWh) based on annual production
(“flow”) and reserve base (“stock”)?

3) What is the cost of the elements in the couple (in $/kwWh)?



Outline of the talk

» Research question and motivation

* Couples, methods, and results
— Specific energy of the couples
— Energy storage potential (ESP) of the couples

« Conclusions and further thoughts



Most couples are established and reversible;
some are in the development or research stage

Li-ion / Li metal

C,/LiCoO0,
C,/LiMn,0,

Ce/LiNig 5C0g 15Alg 050,
C/LiFePO,
Li,Ti-0,,/LiC0O0,

Si/LiCoO,
C./0.3LiMn,0,-0.7LiMn, cNiy :O,
C./LiMnPO,

Li/LiCoO,
Li/S

Aqueous

Pb/PbO,
Cd/NiOOH

REE-Ni H./NiOOH
LaNi H./NiOOH

Zn/NiOOH
Zn/MnO,

High temperature

Na/NiCl,
Na/S

Mg/Sb

Bolded couples have established, good reversibility

Flow

V(S0,)/VO,(HSO,)
Zn/Br,
Na,S,/NaBr,
CrCl,/FeCl,
Zn/Ce(CO,),

Zn/Cl,

Metal air

Zn/0O,
Li/O,



Many couples are suited for grid applications
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Li-based couples are best suited for vehicles
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Our analysis only includes the elements contained
In battery active materials

« Example: Ni/MH battery

Elements used in Battery Battery cell Battery system
battery active materials electrode

/

Ni, O, H, Rare
earth elements
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Images from the 2005 Prius Ni/MH battery



The energy storage potential is obtained from annual
production and reserve base, and basic electrochemistry

Resource availability is obtained from:

— Annual production of the elements (metric tons): A “flow” that is known accurately.

— Reserve base of the elements (metric tons): Includes amount of an element in the
ground that be extracted at today’s prices plus some subeconomic reserves;
a “stock” known with less accuracy.

» Each couple has a limiting element, the one that runs out first during scale up.

* The enerqgy storage potential (ESP) (TWh) is obtained from the availability of
the limiting element, and using couple stoichiometry and average cell potential.

» The couple cost ($/kWh) is obtained by summing the costs of all the elements.
These values are uncertain because of the variety of forms of active material
inputs.

Annual production and reserve base numbers are drawn from the USGS Mineral Commodity Surveys.



One example: the C4/LiICoO, couple

C, active material LiCoO, active material

Annual production C: “large”
(metric tons):

Reserve C: “large”
base (metric

tons):

Active-material C

limiting element:

Practical specific 372
capacity (mAh/qg):

Li: 25,400
Co: 75,900
O: “large”
Li: 11x106%
Co: 13x1068
O: “large”

Co

150

Couple limiting element: Co

Cell potential (V): 3.8

Annual production ESP (TWh): 0.07
Reserve base ESP (TWh): 11.43

Couple cost: 76.70 $/kWh
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Na,S,/NaBr, [Br]
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Mg/Sh [Sh]
LaNigHg/NIOOH [La]
Li,Ti.O,,/LiCoO, [Co]
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vehicle batteries
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Conclusions

 We asked: in the short (10 to 15 year) and long (40 to 50 year) term, are
there resource constraints on scaling up batteries for grid and vehicle energy
storage?

* The answers:

« Several battery couples suitable for grid storage can scale without resource
limits to short- and long-term goals: Na/S, Zn/Cl,, CrCl,/FeCl,.

« For EVs, Li-based couples have the most suitable specific energy.

— About 10 million 40 kWh Li-based EV batteries can be made with the
annual production of Li.

— About 1 billion 40 kWh Li-based EV batteries can be made with the
Li reserve base.

* Lifetime system cost, and other factors, will likely limit scale up more than
resource constraints.




Future battery chemistries: one example (Mg)
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Other aspects to consider

* Increasing the production of an element by a factor of two requires
iInvestment and time.

* Recycling.

» Resource limits for other system components (not just the active materials).
Catalysts may be particularly important (Pt, Pd, etc.).



» This work has been published:

Cyrus Wadia, Paul Albertus, Venkat Srinivasan, “Resource Constraints on the
Battery Energy Storage Potential for Grid and Transportation Applications,”
Journal of Power Sources, Volume 196, Issue 3, p. 1593-1598, 2011.
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