

Ab initio approaches to understanding, optimizing and discovering energy storage electrode materials

Kristin Persson

Lawrence Berkeley National Laboratory

Outline

How can computations help ?

- What are computable properties?
- Application examples:
 - Rate-limitations in graphite
 - Tuning particle morphology in LiFePO₃
 - Explaining the hysteresis in LiFeF₃ conversion reactions
- Discovering New Intercalation Cathodes
 - For Li-ion batteries
 - Pellion Technologies: Rechargable Mg batteries
- Towards the Materials Genome

 Accelerated materials discovery for energy storage applications

The equations describing the basic physical interactions of matter are known

$$H\Psi = E\Psi$$

$$P_i = \frac{\exp(-\beta E_i)}{Z}$$

Quantum mechanics + statistical mechanics

We can predict materials properties from assuming/ knowing where the atoms are....

Examples: Computable Material's Properties

Rate limitations in graphite

Exp facts of Li-graphite

- At low temperature rate capability of carbon anode deteriorates rapidly
- Li diffusion measurements in graphite span 10⁻⁷ 10⁻¹² cm²/s

Material	RT	T (°C)	Range of x in	Method	Reference
	diffusivity	92. 3258	LixC6 (or		
	(cm ² /s)		potential vs Li)		
Graphite	10-11	RT	2872	12	From Megraw
Artificial graphite	10 ^{-9.4} -10 ^{-7.7}		0.1 < x < 0.95	EIS ⁽³⁾	Takami et al (see Yu et al)
Natural graphite	10 ⁻⁹ -10 ⁻⁷		0.1 < x < 0.95	EIS ⁽³⁾	Takami et al
Graphite	10 ⁻⁹ -10 ⁻¹⁰	20		PSCA ⁽¹⁾	Zhang et al
Graphite powder	10 ⁻¹² -9.3×10 ⁻¹⁴	55	0.1 < x < 0.57	PITT	Yu et al
Graphite powder	2.27×10 ⁻¹³	55	x = 0.36	EIS - Warburg	Yu et al
Graphite powder	10 ⁻¹⁰ -6.5×10 ⁻¹¹	25	0 < x < 0.35	Modified EIS	Yu et al
Graphite powder	1.12×10 ⁻¹⁰ - 1.35×10 ⁻¹⁰	25-55	x=0	Modified EIS	Yu et al
Graphitized MCMB	10-10		0.2 -0.05 V	EIS	Chang et al (see NuLi et al)
Graphite	1.2×10 ⁻¹⁰	30	0.085-0.080 V	PITT	Levi et al
coke petroleum (soft)	10 ⁻⁹ -1.8×10 ⁻⁸		0 < x < 0.65	PITT ⁽²⁾	Guyomard and Tarason (see Yu et al)
Coke (soft)	10-9				From Megraw
Carbon fiber (hard)	10 ⁻¹² - 10 ⁻¹⁰		0 < x < 0.65	CPR ⁽⁺⁾ and PSCA	Uchida et al (see Yu et al)
Carbon fiber pitch-based (hard)	10-11-10-10		0.1 < x < 0.5	EIS	Morita et al (see Yu et al)
Carbon fiber (hard)	10 ^{-7.7} – 10 ^{-6.4}	С	0.1 < x < 0.5	EIS	Takami et al (see Yu et al)
Hard carbon	3×10 ⁻⁷	100			Saito et al
Carbon fiber (hard)	10-10		x = 0	Modelin g and CV ⁽⁵⁾	Verbrugge and Koch (see Yu et al)

Can we find out what the Li mobility in graphite really is using first principles ?

Exp facts of Li-graphite

Graphite intercalates in stages

All possible Li-graphite decorations

ccccc

Correct staging is obtained by adding vdW to empty layers

The right Li-C interactions

Predicting how fast Li moves in graphite

¹ K. Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki and G. Ceder, J Phys Chem Lett 1176–1180, 2010.

K. Persson, Y. Hinuma, Y. S. Meng, A. Van der Ven[,] and G. Ceder[,] Thermodynamic and Kinetic Properties of the Li – Graphite System from First-Principles Calculations, Physical Review B 82, 125416, 2010.

Carbon can be super fast!

Computations predicted in-plane Li diffusivity of $\sim 10^{-7}$ cm²/s

Charge/discharge 45 nm graphite particle in **0.2 ms**!

Same month experiments published ~1000C rate in single carbon particle

Figure 3. Discharge curves of a single MCMB particle (diameter: 18 μ m) measured at various currents. Prior to each discharge, the MCMB particle was fully lithiated by charging at a low current of 3 nA.

Dokko et al, J Phys Chem C, 114, 18, 2010

These studies show that 'normal' **low rate** behavior of carbon anodes is **not due to graphite We** may be able to engineer the electrodes to be better!

Tuning the particle morphology of LiFePO₄

Motivation: morphology optimization of LiFePO₄

- LiFePO₄ performance very dependent on particle size and shape
- Morphology dependent on facet growth-rate, strain, temperature etc¹
- Maximize *ac* facet for optimized Li intercalation into particle

Can we understand particle morphology development through firstprinciples calculations and tune it by changing water conditions?

¹Chen, Song and Richardson, ESSL 9, A295 (2006).

How do we compute particle shape?

How can we study electrode material surfaces and relevant processes with ab initio modeling?

Ability to predict

- Preferred absorbed species on different surface facets
- Stable surface facets in equilibrium with different aqueous environments including dissolution
- Particle morphology as function of aqueous environment

Water map: Pourbaix diagram

We consider all reactions to be in equilibrium with water

Stable surface facets are calculated

Surface energies with H, O, OH and H₂O termination for all relevant crystal facets

Reducing conditions

Equilibrium particle shapes can be predicted as function of solution pH, oxygen chemical potential and Li⁺ concentration

'Normal' Water Conditions

For $0 < \mu_0 < -3.1$ shape change is due to Li ions dissolving from the surfaces which affects the surface energies and therefore the shape. Supported by exp¹

¹K. Dokko, S. Koizumi, H. Nakano, and K. Kanamura, J. Mater. Chem. **17**, 4803 (2007).

Compare to Exp

Increasing the Li concentration enables the same shape particle be synthesized at lower pH

L3-5.1 Πμm pH = 6.5

[Li⁺] = 3 M [Li⁺] = 2 M ¹K. Dokko, S. Koizumi, H. Nakano, and K. Kanamura, J. Mater. Chem. **17**, 4803 (2007).

LAWRENCE BERKELEY NATIONAL LABORATORY

pH = 5.1

Explaining the hysteresis in conversion reactions

Hysteresis in conversion reactions

Conversion reactions: e.g. $TM-O_x + 2xLi \rightarrow TM_{(nano)} + xLi_2O$

All conversion reactions show hysteresis; from 0.3 V (hydrides) to 1.5 V (fluorides):

From Bruce P. et al, AngChem 2006

Possible explanations

To design conversion materials without hysteresis, we need to understand the cause:

¹Taberna et al, Nat Mat 2008 ²Bruce AngChem 2006

Different transport properties of the involved chemical species induces different reaction path on conversion and re-conversion ?

If thermodynamic equilibrium \longrightarrow voltage profile same during charge and discharge

Published in R. E. Doe, K. A. Persson, Y. S. Meng, G. Ceder, Chemistry of Materials, 20, 5274, 2008.

Consider diffusion during conversion

If Fe diffuses much slower than Li^+ , then maximum reduction in Li_xFeF_3 will occur rather than Fe precipitation.

¹ Courtesy of Badway, F.; Cosandey, F.; Pereira, N.; Amatucci, G. G. J. Electrochem. Soc. 2003, 150, A1318, A1209.

Kinetics during Oxidization

Consider diffusion during re-conversion

Fe migrates slowly into LiF and Li⁺ moves quickly out, so maximum oxidation in Li_xFeF_3 will occur.

¹ Courtesy of Badway, F.; Cosandey, F.; Pereira, N.; Amatucci, G. G. J. Electrochem. Soc. 2003, 150, A1318, A1209.

Discovering New Intercalation Cathodes

Can we compute all computable properties for all materials ?

experimental literature computed

+U is fit to binaries - method is predictive outside its fitted compound

Structural stability – is the reaction topotactic?

How to compute safety?

- Oxygen release correlates with oxygen chemical potential of cathode

Experience agrees with results

Increasing oxygen chemical potential

lonic mobility

Developed ability to automatically find diffusion paths for Li/Mg/... in structures.

Evaluated thousands of known structures...

LAWRENCE BERKELEY NATIONAL LABORATORY

Organized in Materials Properties Database...

<u>F</u> ile <u>T</u> o	ools									
capacity ((mah/c¢)			(apacity (mah/g)			database		
								2		🗳 Composition Phase Diagram of Li-O-P-Ti
e above h	hull (delithiat	ed)			above hull (lithia	ated)		element		File Options Tools Inspector Method Window ?
								Li & Ti & O		missing license, cannot fipd = C1Documents and Settings\anubhavjiDesktop\rsrc\jv-lic.lic
energy de	lensity (wh/kg	g)		i	energy density (w	h/D		entry id		register at www.javaview.ea
								3		
initialfina	alnotes			i	s ordered			number of eler	ments	
								3		
overall st	tability rating			1	structure id			sum formula(n	ormali	P1 TI2 P1 TI3
voltage (a	(avg.)	50								
				6.01	E		NACE IN A			
L	Include AL	L (duplicates, rem	ovals)	GOI	Export cirs	Export results	VASP inputs	Analysis	FIIte	
511 entri	ries match									1212 63 A (2017) 2211 12 23 8 2 7 13
su	um formula	voltage (avg.)	capacity (r	mah/g)	e above hull (lithi	e above hull (deli.	valence text diff	valence text diff	coordi	A CONTRACTOR
Li7 O	024 Ti11	2.6954207400	83.688732	2410	00	0.0490699288	Ti:3+Ti:3+	Ti: 4+Ti: 4+	0:4.53	2201
Li4 O	08 Ti4	2.654583785	308.21958	3136	000	0.34574246	Ti:3+Ti:3+	Ti:4+Ti:3.50	0:5.86	
Li2 O	04 Ti2	1.605799815	308.21958	3136	0.0041093487	0.0016269349	Ti:3+nullnull	Ti:4+nullnull	0:5.89	
Li7 O	012 Ti5	2.6956740533	167.25190)943	0.0066086702	0.1703648421	Ti:3+Ti:3+	Ti:4+Ti:4+	0:5.98	
Li2 O	04 Ti2	1.593053745	308.21958	3136	0.0071577175	0.0014427366	Ti:3+	Ti: 4+	0:5.88	1.42/1

Collaboration with MIT: Made possible by Gillette (P&G), Bosch and Umicore and BATT

Structure 228104 - Li2 04 Ti2	0.1330340010 11.3.304	Ctrl-Click to (de)selec	t elements (note that	t commonly used Li, P	and O are preselected	by default)	
Instructions	0.1554955291 Ti:3.50+						Creat Care Orthogo
P1 Rotate: Click (hold) & Drag Mouse	0.1555759566 Ti:3.50+	AA : Generic cation A	Cm : Curium	Hg : Mercury	Np : Neptunium	Sm : Samarium	Grand Can. Options
a=4.091Å Rotate about extra axis: Shift+Right click+Drag (hold all)	0 155499395 Ti 3 50+	AC: ACUNIUM	Co: Cobalt	Ho : Holmium	O: Oxygen	Sn : Tin	Crand Canonical
b=5.1254 Zoom: Hold Shift, move Mouse up & down	0 1555906422 TH2 501	Ag: Silver	Cr : Chronnum	I: Iouine	D : Dheenherus	SI : Su onuum	V Grand Canonical
c=4.091A Measure distance: double-click points	0.1555896455 11.5.50+	An : Anonicium	Cu: Coppor	In : Indium	P : Phosphorus	Ta : Tantalum	Projected Element
Beoor Participation and Contract and Contrac	0.155482845 Ti:3.50+	Arr: Argon	D : Doutorium	K : Dotaccium	Pa. Protacumum	To : Technotium	
-113.5	0.0582667381 Ti:3.33+	As : Arsonic	DD: Generic cation [D Kr · Krynton	Pd · Dalladium	Te : Tellurium	O:Oxygen
	0 1552515066 Ti 3 54+	At · Astatino	Dv · Dvsprosium	La:Lanthanum	Pro . Promethium	Th: Thorium	
	0 1551069414 Ti:2 54	Au : Gold	EF : Generic cation F	E Li:Lithium	Po : Polonium	Ti : Titanium	μ-
	0.1331908414 11.5.34+	B : Boron	Er : Frbium	Lr:Lawrencium	Pr : Praseodymium	TI : Thallium	Temperature = 300
	0.1553904775 11:3.57+	BB : Generic cation B	Es : Einsteinium	Lu: Lutetium	Pt : Platinum	Tm : Thulium	
	0.1553038264 Ti:3.63+	Ba : Barium	Eu : Europium	M : Generic cation M	Pu: Plutonium	U : Uranium	1 1 1 1
	0 5503116983 Ti 3+1	Be : Beryllium	F : Fluorine	Md : Mendelevium	Ra: Radium	V : Vanadium	0 500 1000 1500 2000
ChangeTheWorld Imol	0.0004872116 Ti:2 Ti:	Bi : Bismuth	FF : Generic cation F	Mg : Magnesium	Rb: Rubidium	W : Tungsten	Part Pres (atm) 1
	0.0004875110 11.5+ 11.	Bk : Berkelium	Fe : Iron	Mn : Manganese	Re: Rhenium	X : Generic anion X	
viewer size polyhedra translucency view polyhedra supercell	0.1349100099 11:3+	Br : Bromine	Fm : Fermium	Mo: Molybdenum	Rh: Rhodium	XX : Generic anion XX	Reducing Agent None
BASIC DR PROPERTIES	0.0457703283 Ti:3+	C : Carbon	Fr: Francium	N : Nitrogen	Rn: Radon	Xe: Xenon	
and formula: U2.04 Ti2	0.0478228155 Ti:3+	CC : Generic cation C	Ga : Gallium	Na : Sodium	Ru: Ruthenium	Y : Yttrium	Crit. µ list
sum formula.		Ca: Calcium	Gd: Gadolinium	Nb : Niobium	S : Sulfur	YY: Generic anion YY	
		Cd : Cadmium	Ge : Germanium	Nd : Neodymium	Sb : Antimony	Yb : Ytterbium	Entry Onthese
entry Id: 180849		Ce : Cerium	H: Hydrogen	Ne : Neon	Sc: Scandium	ZZ: Generic anion ZZ	Entry Options
entry physicallocation: disorderedNew3/3/Li1_02_li1/vasprun.xml.relax2.c		Cf : Californium	He : Helium	Ni: Nickel	Se : Selenium	Zn : Zinc	ICSD only
db key: 20090120205645LiOTi-59.9770246-VASP		CI : Chlorine	Hf : Hafnium	No: Nobelium	Si : Silicon	Zr: Zirconium	
EXTENDED VASP INFORMATION						0	Col Down of
final energy: -59.9770246		Make PD R	Reset Data Re	dox Analysis	nase Stability Range	Compare PDs	Get Report
final energy per atom: -7.497128075					0%		40
initialfinalnotes: final	•	L					40
]	Ready					

Three cathode materials discovered using high-throughput DFT

Chemistry	Novelty	Energy density vs. LiFePO ₄	% of theoretical capacity achieved in the lab to date
LiMnBO ₃	Compound known (new electrochem.)	50% greater	~45%
Li ₃ M(PO ₄)(CO ₃) M=Fe, Mn,	New	40% greater	~45%
Li ₉ V ₃ (P ₂ O ₇) ₃ (PO ₄) ₂	New	20% greater	~65%

All three systems synthesized in Ceder group at MIT during the last 18 months

Alternate crystal structure of LiMnBO₃ exhibits good performance

Previously unknown lithium metal carbonophosphates as cathodes

New polyanion material exhibits good electrochemical performance

Chemistry	Novelty	Energy density vs. LiFePO ₄	% of theoretical capacity achieved in the lab to date
Li ₉ V ₃ (P ₂ O ₇) ₃ (PO ₄) ₂	New	20% greater	~65%

Courtesy of Jain, Ceder (in submission)

large (~20 micron) particle size needs to be reduced

Pellion Technologies: Rechargeable Mg intercalation batteries

Why Mg?

CAPACITY: Mg is divalent (Mg²⁺) thereby displace double the charge per ion compared to Li^{+.} 3x in volumetric energy, 2x in gravimetric
 ANODE: Mg metal can be used as anode (2300 mAh/g)
 ELECTROLYTES have been developed for stable Mg deposition (Aurbach : > 2000 cycles)
 COST: Mg is much less expensive than Li
 RESOURCE SUPPLY: Mg is 8th most abundant element in Earth's crust. Has variety of sources.

Need a high-energy cathode that works with electrolyte and anode

Mg Cathode Computational Screening

Mg Voltage and Capacity of ≈ 9,600 compounds computed

Accurate diffusion barriers demonstrate fast Mg kinetics for some materials

Computations – Experiments in sync

Computationally screened 9600 compounds

Successfully synthesized 15 different candidate cathode compounds (> 100 samples)

Cathodes currently under electrochemical testing...

Towards a Materials Genome

www.materialsgenome.org alpha version is online!

Current Apps – More Coming

Materials Explorer search the database

Leveraging the Information Age

rrrrr

....Towards a Materials Genome

Computing all properties of all inorganic materials

ΜΙΤ

Gerbrand Ceder Anubhav Jain Shyue Ping Ong Geoffroy Hautier

LBNL NERSC

Kathy Yelick David Skinner Shreyas Cholia Daniel Gunter Annette Greiner

LBNL EETD Kristin Persson Michael Kocher

LBNL CRD

Juan Meza David Bailey Alex Kaiser Maciej Haranczyk

The End