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cost as a driver of innovation 

 grid-scale applications very attractive 
 

 installed capital cost is a premium  

 best technical alternative is fossil fuel 
generation 
 

 different requirements than portable energy 
storage 
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key requirements 

conventional metrics: 
1. power density 
2. energy density 

metrics for grid-scale storage: 
1. cost (< $150/kWh) 
2. lifespan (> 10 years) 
3. energy efficiency (> 80 %) 
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grid-level markets 

6 

50 GW of mixed capacity available with system costs >$300/kWh 
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niche markets 

7 

12 GW of additional  capacity available for niche 
applications with system costs >$300/kWh 
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thought experiment 

auto @ 45 mph 
electric motor ~ 10A 

auto accelerates to 70mph 
electric motor ~ 100A 

auto @ 70mph climbs hill 
electric motor ~ 300A 

high rate discharge 
critical for PHEV 

 
not as critical for EV 

C/2 for PHEV 
C/12 for EV 

4C for PHEV 
0.8C for EV 

12C for PHEV 
2.5C for EV 

40 mile range 
1.6 kWh  8 mi 

 
8kWh battery 
25 Ah @ 300V 

PHEV 

200 mile range 
5x energy  

 
40kWh battery 
125Ah @ 300V 

BEV 
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thought experiment 

auto @ 45 mph 
electric motor ~ 10A 

auto accelerates to 70mph 
electric motor ~ 100A 

auto @ 70mph climbs hill 
electric motor ~ 300A 

high rate discharge 
critical for PHEV 

regulation 
not as critical for EV 

bulk 

C/2 for PHEV 
C/12 for EV 

4C for PHEV 
0.8C for EV 

12C for PHEV 
2.5C for EV 

40 mile range 
1.6 kWh  8 mi 

 
8kWh battery 
25 Ah @ 300V 

PHEV 

200 mile range 
5x energy  

 
40kWh battery 
125Ah @ 300V 

BEV 
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liquid metal battery 

Donald R. Sadoway David J. Bradwell 
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a modern aluminium smelter 

Charles Martin Hall, USA 

Paul L.T. Héroult, France  1886   

11 

15 m × 3 m × 1 km × 0.8 A⋅cm−2 
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key to finding the answer: pose the right question 

different approach: find a giant current sink 

multiple MW per cell 

aluminum potline 
350,000A ; 4V  

convert this… … into this 
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why is an aluminum cell 

not a battery? 

produce liquid metals at BOTH electrodes 
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The Periodic Table of  the Elements 
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ambipolar electrolysis 
on discharge 

Mg(liquid)    Mg2+  +  2 e- 

Sb(liquid)  +  3 e-    Sb3- 
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1852, $545.00

1885, $11.33

1896, $0.48

$0.1

$1.0

$10.0

$100.0

$1,000.0

1850 1860 1870 1880 1890 1900

aluminum price (per lb)
*source: From Monopoly to Competion, p.34

gold ~$300

silver ~$15

DeVille
(chemical)

Hall-Héroult
(electrometallurgy)

economies of scale in electrometallurgy 
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attributes of a liquid state battery 
 liquid-liquid interfaces are kinetically the 

fastest in all of electrochemistry 
low activation overvoltage 

 

all-liquid construction eliminates any reliance 
on solid-state diffusion 
long service life 

 
all-liquid configuration is self-assembling 
scalable at low cost 
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 Li ⎮LiF-LiCl-LiI ⎮ Se 

6 Ah cell 

T = 375˚C 

Shimotake, Rogers, and Cairns 

(Science, 1969) 

short term 

steady state 
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ARPA-e project 
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ARPA-e development plan 
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technology maturity 
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1 Ah cell performance 

Metric ‘Best of’ cell results 

1. Discharge capacity  650 mAh/cm2 

2. Nominal discharge voltage 0.68 V @ 250 mA/cm2 

3. Capacity fade 0 %/cycle 

4. Round-trip energy efficiency  65 % 

5. Electrode cost  $ 81 /kWh; $ 210 /kW 
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1 Ah cell performance 
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Note: energy efficiency can be improved by electrolyte optimization. Energy 

efficiency values of > 70 % have been achieved in other cells. 
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1 Ah cell cross section 

This is an example of a cross sectioned liquid metal battery. 

Although the component are liquid at room temperature, the two metal 

electrodes and electrolyte layers are all liquid during operation. 

insulating sheath 

negative  

current collector 

electrolyte layer 

liquid metal  

positive electrode 

crucible 

liquid metal  

negative electrode 



26 



27 



28 

20 Ah cell cycling 
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20 Ah summary 

 3 weeks continuous cycling (on going) 

 70 cycles 

 comparable to ANL performance (17 months continuous no fade or 
degradation) 

 electrolyte not optimized  practical system will have improved 
efficiency 
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"The storage battery is, in my opinion, a catchpenny, a 

sensation, a mechanism for swindling the public by stock 

companies. The storage battery is one of  those peculiar 

things which appeals to the imagination, and no more 

perfect thing could be desired by stock swindlers than 

that very selfsame thing. ... Just as soon as a man gets 

working on the secondary battery it brings out his latent 

capacity for lying. ... Scientifically, storage is all right, 

but, commercially, as absolute a failure as one can 

imagine." 
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cost estimation 

 LMB is believed not only to have low materials costs, 
but also economies of scale upon commercialization 

 basis: intuition & analysis 

 four (4) MIT masters theses 

original analysis justifying initial research 

NPV based analysis indicating need for multiple 
applications even when costs are low 

top down ‘retrofit’ analysis of new build AL smelters 
which identified power electronics costs 

recent analysis identifying electrolyte cost sensitivity 
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masters thesis #1 
David J. Bradwell 

 bottom up analysis 

 $100/kWh as critical price metric for pure 
arbitrage application 

 key information point for Deshpande Center 
funding 
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cell concept 
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battery performance estimates 



36 

proposed system 
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cost estimate for 3m  3m cell 



38 

masters thesis #2 

Ted A. Fernandez 

 similar method of estimating system cost to 
thesis #1 

 did a project based cost estimate and compared 
multiple storage technologies for each use case 

 (nearly) all storage technologies could not 
produce an NPV break even in 15 years on a 
single use case 

 stacking applications critical 
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use cases 
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strategic analysis 
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evaluation 
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value for use cases 
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project NPV analysis 
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base analysis summary 
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summary 

 two key drivers for project profitability 

government incentives 

stacking applications 

 red and yellows turn green  
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masters thesis #3 

Isabel Garos 

 used costs from most recent Al smelter 

 eliminated unnecessary equipment and 
estimated cost of additional equipment 

 modeled a 4 GWh battery in an area similar in 
size to a Walmart supercenter 

 identified high current (100’s of kA) inverter 
costs as a key cost leader at the system level 
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Hall-Héroult cell 
47 

AP35 Cell 
 
Operating current: 350kA 
 
Pot Size(approx): 10x3.5x1.2m 
 
Production: 2.7 tons/pot/day 
 
Consumption: 13,000 kWh/ton 
 
Current efficiency: up to 95.1% 
 
Working temperature: 960ºC 
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aluminum smelter 
48 
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smelter investment 

 Sohar Smelter: 

Location: Sohar, Oman 

Builder: Bechtel 

Commissioned in 2008 

 

Most advanced technology 

360,000 tpy, $2,000 million, $5,500/tpy 

360 AP35 pots; 350kA; 1,650Vdc  

 580MW 4.58V/cell 

2 pot-rooms, 1km long each 

 180 pots per room 

49 
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investment breakdown 
50 

$202m 

Total: $682 million 
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base case 
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Cell design 

Length 3.5 m 

Width 10 m 

Height 0.3 m 

Cell area 35 m2 

Cell characteristics 

Cell voltage 1 V 

Current density 1 A/cm2 

Total current 350 kA 

Cell efficiency 100% 

Roundtrip efficiency 90% 

Charge/discharge time 8 hours 

Cell power 350 kW 

Cell capacity 2800 kWh 

LMB A LMB B LMB C 

$150/kWh $50/kWh $30/kWh 
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base case: results 
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LMB C, $274.93/kWh

52 
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base case 
53 

Building; 
$55.54/kWh

23%

Cell shell; 
$74.87/kWh

31%

Busbars and 
conductors; 
$23.31/kWh

10%

PCS; 
$87.87/kWh

36%

Non-active materials cost $241.6/kWh
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Transformer, 
$7.94/kWh; 9.1% Rectifier, 

$5.08/kWh; 5.8%

Inverter, 
$72.23/kWh; 

82.2%

Switchboard, 
$2.43/kWh; 2.8%

Control System, 
$0.23/kWh; 0.3%

PCS Total cost $87.88/kWh

base case 
54 
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base case 
55 

     Critical cost: 
 
 DC-AC Converter  $72/kWh; 82.2% PCS cost 

      1/3 Non-active materials cost 

  

 · Decrease in cost expected in the near future  

      (advances in PV central inverters) 

 · Further development of bidirectional converters 

 · Analysis of HVDC electrical power transmission 
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sensitivity analysis 
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Initial case 
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sensitivity analysis 

Five Levels of Cells 
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  LMB A LMB B LMB C 

  Base Scen Scen One Base Scen Scen One Base Scen Scen One 

$/kWh 408.26 363.82 297.15 252.71 274.93 230.49 

Ratio  0.89 0.85 0.84 

% 

Building 
14% 3% 19% 4% 20% 5% 

% Cell 24% 27% 33% 39% 36% 43% 

% Active 

Materials 
41% 46% 19% 22% 12% 14% 

% PCS 21% 24% 30% 35% 32% 38% 

Five Levels of Cells 

Footprint reduction: 80% 
Cost reduction: 11-16% 

sensitivity analysis 
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Initial case 

sensitivity analysis 
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60 

Eight Cells per Group 
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Building
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Cell
23%
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Building
14%

Cell
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Active 
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17%
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LMB C, $198.88/kWh

sensitivity analysis 
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sensitivity analysis 
61 
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conclusion 
62 

Critical Points: 
 

· Power Conversion System  need to reduce cost of the 
inverter 
 
· Current-Efficiency relationship will influence the final 
cost (chemistry dependent) 
 
·Non active materials cost as presently estimated exceed 
the market base cost threshold for the entire ESS 
 
·Specific design of pot for LMB can reduce significantly the 
cost of ESS 
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masters thesis #4 

Michael Parent 

 based on most recent understanding of LMB 
chemistries and secondary components 

 analyzed materials scarcity and cost sensitivity 
for LMB couples 

 modeled total installed cost estimate for LMB 
systems based on a 1m  2m cell size 

 identified dry salt costs as important cost 
control target 
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Electrolytes – Costs 

salts used for testing are extremely expensive 

lab grade salt costs 
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Salt 
Retail 

($/kWh) 

Bulk 

($/kWh) 

In-House* 

($/kWh) 
% Savings 

NaF 17 0.35 9 47% 

NaI 463 17 246 47% 

NaCl 447 0.01 240 46% 

NaBr 854 7 458 46% 

KCl 780 0.11 419 46% 

KI 555 12 296 47% 

LiCl 838 10 449 46% 

LiI 622 103 314 50% 

LiBr 752 15 401 47% 

CaCl2 1,220 0.12 656 46% 

KBr 414 9 221 47% 

Electrolytes – Costs  

*Assumes 93% product yield Energy cost taken from a Gen 3 cell at 0.5 A/cm2 

lab scale purification 
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System – Cell Enclosure 

Material Part 
Cost 

($/kg) $/kWh 

Steel A,A',B 0.55 [1] 6.7 

Alumina C 100.00 [2] 22.5 

Graphite D 1.50 [3] 1.7 

Copper wiring 9.75 [4] 1.3 

various misc. NA 2.5 

cell enclosure cost estimate 
A

A'

C

D

B

total: $35/kWh 
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System – Battery Enclosure 
structure cost estimate 

 footprint cost of $5,000/m2 

varies based on stacking structure 

$22-$33/kWh for this model 
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System – PCS Costs  

•higher power systems have lower unit costs ($/kW) 
•1 MW  $582/kW 
•assume $600/kW ($75/kWh) 

PCS cost estimate 

y = 582.17x-0.21 
R² = 0.75 

0

200
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0 5 10 15 20 25

0
9

$
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W
 

Power (MW) 

data from Sandia Labs report (1997) 
data from personal communication with Raytheon 
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component summary 

$34-$486 

electrodes 

$17-$1200 

electrolyte 

$35-$203 

cell 
enclosure 

$75 

PCS 

$22-$33 

battery 
enclosure 
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Technology  
Total system cost 

($/kWh)  

Pb-Acid 750-1000 [1] 

NaS  571  [2] 

ZEBRA  680 [3] 

Li-ion  1500-3500 [1]  

LMB-Gen2 1000  [4] 

LMB-Gen2 225 [4] 

Results – System 
results 

electrolyte 
$817/kWh 

electrolyte 
$20/kWh 
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Liquid Metal Battery team 
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sponsors 


